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Polynomial dispersion of trajectories in sticky dynamics
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Hamiltonian chaotic dynamics is, in general, not ergodic and the boundaries of the ergodic or quasiergodic
area (stochastic sea, stochastic layers, stochastic webs, etc.) are sticky, i.e., trajectories can spend an arbitrarily
long time in the vicinity of the boundaries with a nonexponentially small probability. Segments of trajectories
imposed by the stickiness are called flights. The flights have polynomial dispersion that can lead to non-
Gaussian statistics of displacements and to anomalous transport in phase space. In particular, the presence of
flights influences the distribution of Poincaré recurrences. We use the distribution function of
(1,t;&,&p)-separation of trajectories that at time instant ¢ and trajectory length [ are separated for the first time
by €<<1, being initially at a distance &y<<e. The connection of this function, called the complexity function
[Afraimovich and Zaslavsky, Chaos 13, 519 (2003)], with the distribution of Poincaré recurrences is estab-
lished for three cases: (i) for the case of superdiffusion in standard and web maps for which the stickiness is
defined by the boundaries of hierarchical sets of islands; (ii) for the case of the Sinai billiard with infinite
horizon, where the stickiness is defined by zero-measure slits in the phase space; (iii) for the square billiard
with a slit (bar-in-square billiard) where the Lyapunov exponent is zero and the stickiness is defined by the
vicinity of the trajectory to the closest periodic trajectories obtained from the Diophantine approximation.
Finally, the powerwise asymptotics of the Poincaré recurrences can be connected, in some cases, to the

anomalous transport exponent.
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I. INTRODUCTION

Typical Hamiltonian systems with low number of degrees
of freedom have nonuniform phase space filled by domains
of chaotic dynamics (stochastic sea, stochastic layers, sto-
chastic webs) and domains of regular dynamics (islands, iso-
lated periodic trajectories, etc.). All these irregularities sug-
gest a nonuniform mixing, weak mixing, and non-Gaussian
statistics of particle dynamics in phase space and, as results,
anomalous transport, and particularly the appearance of infi-
nite moments of observables. As a possible cause of all these
anomalies, one can mention the existence of domains in
phase space where the dispersion of trajectories is polyno-
mial, in contrast to the exponential dispersion in Anosov type
systems (for a review see [1]).

Although we cannot state at the moment that typical
Hamiltonians do not have exponential dispersion at all in the
infinite time limit, we can suggest that for a dense set of the
values of control parameters and for sufficiently long, even
astronomically long, time the dispersion of trajectories can
be polynomial, i.e., the corresponding Lyapunov exponent
can be zero, and the typical analysis, based on the so-called
finite time Lyapunov exponents, fails. To avoid the difficul-
ties related to the necessity of considering the — oo limit, a
complexity function was introduced in [2] that permits the
inclusion of both cases of dispersion: polynomial and expo-
nential. The notion of the complexity function is a generali-
zation of the ideas of e-separation in phase space [3-5]. The
generalization consists of a new probability distribution
function of the first (I,¢; e, g)-separation of a pair of trajec-
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tories, initially at a distance g,, and finally at time ¢ at a
distance €, gg<<e<<1, and with the length of the trajectories
~1. Thus, one can consider in a natural way any instability of
trajectories in phase space. The goal of this paper is to con-
nect the complexity function, as the characteristic of the tra-
jectory dispersion, to some observables such as the Poincaré
recurrence distribution or the evolution of moments of the
particle displacements, i.e., particle transport.

We will demonstrate such connection for three types of
systems.

(i) For standard and web maps. There exist an infinite
number of values of a control parameter K such that trajec-
tories are sticky to the islands’ boundaries and the transport
is superdiffusive.

(ii) For the Sinai billiard with infinite horizon. This sys-
tem has positive Lyapunov exponent and zero-measure do-
mains in the phase space, which are isolated from the domain
of ergodic and stochastic motion. Nevertheless, these zero-
measure domains induce anomalous superdiffusive transport
[1].

(iii) For the billiard square-with-slit (bar inside) or for the
billiard square-in-square [6,7]. The Lyapunov exponent is
zero for these billiards and the stickiness can be interpreted
as the trajectory vicinity to different parts of the periodic
trajectories.

It is worthwhile to note that in some cases the powerwise
distribution of Poincaré recurrences can be connected to the
transport exponents (see more in the review [1]) and, in this
way, the complexity function can be related to the transport
and diffusion.
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II. COMPLEXITY FUNCTION: DEFINITION

The complexity function (CF) was introduced in [2] in
order to describe systems with different types and level of
instability in phase space. Referring to a very general con-
cept of statistical physics, one can introduce the complexity
C of a system as the number N of possible, in some sense
equivalent, states of the system that we cannot distinguish.
Then C=N measures the “phase volume” of the system due
to the existence of a level of indefiniteness, and the value
S=In C=In N measures the entropy of the system.

The notion of complexity can be developed for systems
with chaotic dynamics where the indefiniteness appears as a
result of the local instability of trajectories in the system’s
phase space. Instability leads to the separation of trajectories
that were initially close to each other in time. Let o be the
level of resolution, or coarse graining, in phase space, i.e.,
two points with a distance d,<<J are not distinguishable.
Two initially close trajectories with the initial distance d
< § will not be separated at any time ¢, i.e., d(¢) <6, if the
dynamics is stable, and they will be separated at some
t, d(t) = 6, if the dynamics is unstable. Thus a bunch of tra-
jectories that starts within an interval 6 reveals a number of
o-distinguishable trajectories after some time, and that is the
mechanism of growth of C=N(z).

The first implementation of this concept for a dynamical
system with chaos was by Bowen [5] who introduced the
notion of (g,n)-complexity. Let d(n) be the distance between
two trajectories at discretized time r=n. Two trajectories, ac-
cording to [5], are (e,n)-separated if there exists such n,
€(0,n) that d(n;)=e. Then the maximal number of
(e,n)-separated trajectories that started at the phase space
domain A is the (g,n)-complexity C(e,n;A) of the domain
A. In particular, it was shown in [5] that for A-axiom systems

—1
lim lim ~In C(g,n;A) = hy,(A) (1)

e—0n—o N

where 7, is the topological entropy. The result (1) can be
easily understood if the phase space is uniformly and expo-
nentially unstable, i.e., for any two trajectories in A,

d(n) =d(0)exp(hn), h=hy,. (2)
Although the introduction of the (e,n)-complexity was im-
portant to study chaotic dynamics, it appears to be impos-
sible to apply it to realistic Hamiltonian systems. Here are
some reasons for that.

(i) Real Hamiltonian chaos does not have uniform char-
acteristics of the instability of trajectories in phase space and
different arbitrarily large and arbitrarily long segments of
trajectories have different increments and even different
types of separation.

(ii) Although the introduced complexity C(e,n;A) de-
pends on time n, this dependence disappears in Eq. (1) after
the limit n— <0 that may not exist in a strong sense.

(iii) The definition of (&,n)-separation includes an arbi-
trary time instant n; € (0,n). This definition leaves some in-
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definiteness about the trajectories during the time interval
(n,,n). This interval can be arbitrarily long for the case of
polynomial dependence of C(e,n;A) on n.

(iv) Definition (1) cannot be applied to a system with
polynomial dispersion of trajectories or to systems with
pseudochaotic dynamics (h=0 but the dynamics is random)
(for more discussions, see [1]).

The typical and most often used way to study nonuniform
chaotic dynamics is to consider the distribution function p(o)
of the finite time Lyapunov exponent o [8,9]

Oa,= iln[d(r)/d(O)]. (3)

Different simulations show that in the Hamiltonian dynamics
p(oa,) possesses a “central peak,” i.e., there exists a local
maximum of p(cy,) near the value o,,=0 [10] (see more
discussion in [11]). This maximum appears due to sticky
domains in phase space that cannot be characterized by the
exponential dispersion of trajectories.

The complexity function of [2] was proposed to avoid the
described difficulties (i)-(iv) and to provide a more adequate
description of sticky chaotic and pseudochaotic dynamics.
The main feature of the CF is to consider small but finite
dispersion of a pair of trajectories by the distance &,

gp<e<l, 4)

with initial dimensionless distance &, and the characteristic
size of the phase space of order 1. Consider again a small
domain A of diameter dy and a set M4(N,gy) of a large
number N of pairs of trajectories such that in each pair the
distances between initial points within each pair are g,. In
the case of

go<dy<ce (5)

all trajectories are e-indistinguishable, i.e., for a fairly small
observation time an observer sees only one trajectory. As
time advances, more and more pairs appear to be
e-distinguishable. Let N4(l,t;e,g) be the number of
e-distinguishable pairs such that (i) all pairs have initial dis-
tance g, at t=0; (ii) all pairs of N4(l,¢;€,g,) are e-separated
for the first time at 7 within a small interval dr; (iii) all pairs
of Ny(1,t;€,¢) have the length of trajectories / (up to small
corrections of the order &) with

I= J leo(t’)dl(t’) (6)

0

where (1) is the unit vector along the trajectory and dl(7) is
a directed element of the trajectory in phase space.
Following [2], the CF C4(l,t;€,gy) is defined as

CA(Lt;SaSO)=NA(lat;8580)' (7)

The main differences of this consideration, compared to the
definition of C(e,n;A) in [5], are the following: (i) the CF is
defined for an arbitrary (discrete or continuous) time; (ii) the
time ¢ in the CF is the time of the first e-separation of pairs
while the instant f; of separation in [5] can be any f,
€ (0,7); (iii) since trajectories in phase space have fairly
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complicated shapes, there are many paths of e-separation at
time instant 7, and different paths can be of very different
lengths / for the same #; this difference cannot be discerned
by C(e,n;A).

The definition (7) can be easily modified for maps with
discrete time. Let {ty,f,,...,%,...} be a sequence of time
instants for the Poincaré map of the system. We assume that
such a map exists and the intervals ¢, —f, may not be equal.
Let n be such a step number that for k<n—1 a pair of tra-
jectories is not e-separated, and for k=n the distance be-
tween particles of the pair is =¢. Any trajectory in phase
space  (p,q) is  defined as the  sequence
{Po.q0:P1-q15---3Pn-q,t of the values (py,q,) at time #;.
Then the length of a trajectory at time instant ¢, is

=2 AL, (ALY = (Apy)* + (Ag?,
k=1

Ap=pi—DPi-1s AGe=qi— i - (8)

A typical situation, for example, for the standard map is the
case when a diffusion of chaotic trajectories is considered in
a cylinder phase space p e (-%,»), g€ (0,27). Then for
larger n trajectories are fairly far from the origin but, never-
theless, the value of A/, depends strongly on Ag,. A pair is
considered to be (1,,,1,;&,&q)-separated, if, for a pair initially
separated by gy <<g, the first e-separation of the pair appears
at time instant 7, where /, is the length (8) of a trajectory in
the pair and the difference between lengths of trajectories in
the pair is neglected due to the small £e<<1. Again, let us
mention a difference between this definition and that of [5]
where [, was not introduced and e-separation could appear at
any k<n. The corresponding definition of the complexity
function is similar to Eq. (7):

CA(ln’tH;s’sO) =NA(ln’tn;8s80)v (9)

where Ny4(l,,1,;€,80) is the number of e-distinguishable
pairs with length [, € (1,,,1,+dl) and separation time t,. In the
following we will consider the asymptotics of ¢— oo(n— )
and the difference between Egs. (7) and (9) is negligible.

Although the CF is defined with respect to the domain A,
the definitions (7) and (9) are not quite local and, in fact,
they can be considered as semilocal since for large ¢ trajec-
tories can depart fairly far from A in phase space.

III. COMPLEXITY FUNCTION IN WORK

In practice, definition (9) is not sufficient and not conve-
nient enough since it is not global and some limits like &
—0 or N—oo cannot be performed and a finite &, and N
should be specified relative to the problem. Let us associate
with a domain A a density p,(l,1;¢,8), i.e., the normalized
density of pairs, taken in the domain A, initially at the dis-
tance g, and e-separated for the first time at the time instant
t within the interval dr and with the natural length of the
trajectory / within the interval dI. We assume bounded dy-
namics with the normalization conditions
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f dldt py(l,t;e,80) = 1. (10)
0

For simplicity, we can also assume a limited uniformity in
phase space, i.e., py does not depend on the choice of the
ensemble of initial pairs, and a limited uniformity of the
increment of instability, i.e., p, depends on the value &/g
under condition (4) rather than on ¢ and g, separately. If N is
the number of initially considered pairs of trajectories in do-
main A, then

canlitse,gg) = Nynll1;58,60)IN = Cy n(1,1:8,80)IN
(11)

is the normalized complexity function if N is sufficiently
large. The last equality in (11) emphasizes that the non-
normalized complexity function is simply a number of
(e,1,1)-dispersed pairs, which is convenient for numerical
calculations. Now the CF density p4(l,t;e,8,) can be de-
fined as in [2]:

pan(lt;e,e0)dl dt =[cy (I +dlt + dt;e,80)
- CAyN(l,t;S,So)]dl dr>0 (12)

since ¢, y is a nondecreasing function.

It is worthwhile to mention the kind of limits applied to
Eq. (11) and those that are not. For finite N, the CF
Cynll,t;€,80) reaches the maximum value max C,y at
some f,,,, if € and g are fixed. That means that the defini-
tion of p, y has the corresponding constraints for finite N. We
suggest that the normalized CF c¢4(/,7;¢&,¢,) appears in the
limit

1
ca(l,t;e,60) = lim —Cy p(1,1;8,8)) (13)
N—x N ?

but the time ¢ is finite at the instant of first e-separation with
e<<1. This condition is different from that usually consid-
ered in the definitions of Lyapunov exponent, Kolmogorov-
Sinai entropy, and topological entropy. It is also different
from the Bowen definition of (e,n)-separation, where the
discrete time n can be arbitrarily large compared to the time
instant n of the first e-separation of trajectories.

The local complexity function can provide fairly detailed
information about the quasilocal phase space dynamics, but
it is most appropriate to introduce some global characteris-
tics. It is convenient to use

C(lt;e,80) = 2, Cy(lt:e,60)m(A)/m(T) (14)

ACT

as the global CF, where the full phase space of ergodic or
quasiergodic dynamics is

I'=UA. (15)
and m(A) and m(I") are measures of A and I'. The corre-

sponding global complexity density is

1
pl.tse,80) = lim —— > m(A)pan(Lt:e.80)  (16)
N—oo m(F)ACr ’

as a generalization of Eq. (13).
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It is sufficiently easy to calculate p(/,7;&,&,) numerically
but, as a compensation for this simplification, it is not so
trivial to connect p(/,z;&,€,) with the observables related to
kinetics and transport. For example, in the important case of
self-similar kinetics

p(L,t;€,80)dl dt = t“"*p(&,1;¢,8,)dt dé (17)
where
E=1/? (18)

and the exponent w, is not identified yet. In the case of the
exponential and uniform dispersion of trajectories [2]

p(l,t;e,80) = (const) X (s/so);eh’p, (19)

where d is the phase space dimension and /4, for the models
considered below with 1% or 2 degrees of freedom, is the
topological entropy (in many physical problems with chaotic
dynamics and mixed phase space, % is of the same order as
the Kolmogorov-Sinai entropy or the Lyapunov exponent av-
eraged over different A [9]), and p, represents the part that
depends on [. In the simplest situation p;=8(I-1(r)), i.e., it
does not depend on the initial point.

The formula (19) appears in the case of exponential dis-
persion of pairs when the distance between two trajectories
d(t)=d(0)exp(ht) is similar to (2). The number of pairs in A,
in the case of uniform mixing, is proportional to the volume
of A, ie., for d(0)=¢gq, d(t)=e, the complexity density

should be proportional to (g/g,)¢ with d as the box dimen-
sion of A. Although the expression (19) can be useful for
some cases, it is not generic and our simulations in Sec. IV
show a deviation from the exponential dispersion of trajec-
tories.

Our next goal is to find a link between p and other ob-
servables or, more specifically, between p and the Poincaré
recurrence distribution P(f;A),

fx P(t;A)dr=1, (20)

0

and between p and the distribution function of displacement
F(x,1), i.e., the probability density to be at point x at time .
The Poincaré recurrences to the domain A are defined
through the set {7,7,, ...}, Where ; is the time instant of the
kth escape from A of a trajectory initially at 7, in A. The
intervals Ar,=t,,,—t, are called Poincaré cycles, i.e., the
time between two successive escapes of the trajectory from
A. For large T the number of Poincaré cycles N, .(T,A) is
large and P(t;A)dt~n,,.(t,A)/N,(T,A) where n,, is the
number of cycles of length ¢ € (¢,7+dt). If t<<T and t— oo,
the difference between the discrete time dependence of n,,,
and the continuous one is negligible (see [12]).

Assume also that the dynamics is topologically transitive,
i.e., if x is a point in a part of the phase space with chaotic
dynamics (called the stochastic sea) then the considered tra-
jectories can be arbitrarily close to x when r— o0 [13]. Then
there is the following conjecture.

Conjecture 1. Let the full phase space of dynamics Ap
with I' <o have only the singular domain A¢C A and let the
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FIG. 1. An example of two trajectories in a sticky domain
AS.

dynamics be area preserving and uniform in Ap\Ag. We also
assume that such a splitting of A into two domains Ay and
Ar\Ag is possible or it is a fairly good approximation. The
singular domain Ag is a sticky domain or quasitrap where
trajectories can spend an arbitrarily long time before their
escapes (see Fig. 1), and the probability of a long stay in Ag
is not exponentially small. Then for ACAr and ANAg=QD
we have asymptotically

P(t;A)~f dlpy((lt;8,8), 11— 21
0

The result (21) follows from the property that the mixing
in Ag is much slower than in any A C Ay. If the escape prob-
ability

P,.(1) ~ (const)/t¥esc, — 0, (22)
then [1] for ANAg=D
P(t;A) ~ (const)/t”, t— o, (23)
with
Y= Yese- (24)

This result can be understood in the following way. Consider
arbitrary A not too close to Ag and a set of well mixed tra-
jectories that do not enter Ag during time ¢. For these trajec-
tories

P(t;A) ~ m(A)exp[ (- const) X 7] (25)

where const ~/,,,(A) [1,14,15]. When 7— o, the probability
density (25) decays exponentially. Nevertheless, due to the
topological transitivity, there exists a finite probability for
trajectories to enter Ag and escape from Ag following the rule
(22). Then we can write simply

P(t;A) = P,(1;A) + Py(1;A) (26)

where P;(t;A) is related to the trajectories that did not enter
Ag during time ¢ and P,(7;A) # 0 is related to the trajectories
that enter Ag at least once during the time ¢. As t— o the first
term in (26) disappears and for the second one we have

P(t;A) ~ P(t;Ag), t— =, (27)

which leads to (24). This statement was never proved but it
was supported by many numerical observations (see refer-
ences in [1]).
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Similar arguments can be applied to the conjecture (21).
Indeed, the long time recurrences can appear with a reason-
able not exponentially small probability after trajectories’ en-
trance into the singular domain Ay and their following es-
cape. Correspondingly, long time separation of a pair appears
only when the initial conditions of the pair belong to Ag. We
consider one trajectory as the reference one and a second
trajectory very close to the reference one. When the separa-
tion becomes &, we start a new pair with the same reference
trajectory and a new second trajectory, and so on (see [10]
where the procedure is described in detail). The reference
trajectory of the pairs is visiting different parts of the phase
space and, due to the topological transitivity, enters the sin-
gular domain Ag (see Fig. 1).

The dynamics, which is random in some sense but has
zero Lyapunov exponent, is called pseudochaotic. Different
examples of pseudochaos are considered in [1,6,7], and, par-
ticularly, the dynamics in polygonal billiards is pseudocha-
otic. For pseudochaotic dynamics, it can happen that there is
a global uniformity of phase space and there is no special
singular domain Ag. Then, instead of (21), there is a stronger
relation

o

P(t;A)=P(t) ~ J dl p(l,t;e,g),
0

t—oo,  (28)

i.e., no dependence on the domain A. In the next section we
provide four examples to illustrate (24) and (28).

In some examples of the following sections we consider
discrete maps instead of continuous flows. In these cases the
time variable is discrete, t,=n, and instead of P(r) we will
consider P(t,)=P(n). This is valid for the cases when the
time interval between the consecutive steps of the map is
constant.

IV. EXAMPLES FOR THE STANDARD MAP AND WEB
MAP

The standard map is defined as

Pne1=DPn— K sin X Xntl =X+ Py (29)

on the torus (p,x) € (-, 7). It was shown in [16] that there
exists a set of special values of K, such that the distribution
of recurrences P(r) has power tails for 7— o due to stickiness
to the islands of the so-called accelerator mode. Examples of
such values of K, were presented in [17-19]. The set K,
seems to be as dense as rationals, but for some values of K?
the effect of stickiness is much stronger than for others. One
such value is K =6.908 745 [17].

The setup for simulations is the following. Consider a
reference trajectory z;(1)=(x;(¢),p,(¢)) with initial condition
(x(0),pi(0)) e A and a corresponding pairing trajectory
Z,((l) (t):(x]((l) (GR p,((l)(t)) with initial condition (x]((l)(O), p,({])(O)
e A) such that

dist]|z{"(0) = z,(0)| = gy < e < 1. (30)

After some time interval ¢, the pairing trajectory crosses a
tube of radius & around the reference trajectory (see Fig. 2).
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FIG. 2. Exit of pairing trajectories from the e-tube around a
reference trajectory.

The length of the tube at that moment is /;. Then another
pairing trajectory z,(f)(t)z(xf)(t,), p,(cz)(t])) is started with
dist||z,(<2)(t1)—zk(t1)||=80. It crosses the tube for the first time
at time instant 75=f,+7, and the tube length I;=1I,+1,. This
procedure can be applied many times for the same reference
trajectory z;, and for a set {z;}, z; € A, of reference trajecto-
ries. As a result, we obtain N(I,t;e,g,) events of
(1,t,€)-separation, i.e., the number of pairs that are separated
by e after time 7 and length /. It is the complexity function
that can be normalized as [2]

p(l,t;8,80) = N(L,t;€,80)/N, (31)

where N, is the full number of separated pairs that includes
separation with any ¢ and /.

Simulation gives the power laws (23) with y=3.3+0.1 for
K*=6.908 745 and y=3.1+0.1 for K=6.1 (see Fig. 3). The
first value is in good agreement with the previous result y
=3.25+0.1 [16]. The second result can be interpreted as the
result for separation of orbits in the case of “normal” diffu-
sion. Consider an enveloped, or coarse-grained, phase vol-
ume I'(r) and estimate how it grows with time. If diffusion is
normal for the standard map, then Ap={|p|*)">*~ "> and
Ax~tAp~1t¥?. In this case the growth of an enveloped

phase volume I is

-4

.. K=6.908745

logwn

FIG. 3. Probability density of recurrences after n steps, P(n), for
the standard map: 5 X 107 iterations for 77 824 pairs of trajectories.
Initial conditions are taken from a box 2.5<x<<3, 0.21 <p<0.22.
Initial separation of a pair £,=107° along the p axis; £=0.01. For
K=6.1 the slope is —=3.1 in the time interval (2<<log;on<5); for
K=6.908 745 the slope is —3.3 for the time interval (3 <logon
<5).
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_7+
K=6.349972

logmn

FIG. 4. Probability density of recurrences after n steps, P(n), for
the web map: 5X 107 iterations for 81 920 pairs of trajectories.
Initial conditions are taken from a box 2.5<x<3, 0.21<p<0.22.
Initial separation of a pair is y=107% along the v axis; e=0.01. For
K=6.25 the slope is —2.9 in the time interval (3.2<log,yn<4.5);
for K=6.349972 the slope is —3.2 for the time interval (3.3
<log;on<4.9).

['(1) = Ap(r)Ax(z) = (const) X 2% = (const) X 7.
(32)

From Eq. (32) the probability of return to an initial small
phase volume I'y during the time interval (0,7) is

P, (1) ~ To/T() = (const)/?, (33)

where P;,(1) is the integrated probability P(), i.e., the prob-
ability density of recurrences is

P(t) =—dP,,(t)/dt = (const)/r’. (34)

It is worthwhile to mention that the value y=3, as follows
from Eq. (34) for the normal diffusion, coincides with the
same value of y for some cases of anomalous diffusion (see
for example the case of the Sinai billiard in Sec. V). First, the
values of y for the anomalous cases were never rigorously
evaluated, i.e., small deviations from y=3 and from the
power law are possible (for example, log 7 terms could ap-
pear in the Sinai billiard model). Second, the power law
behavior for the Poincaré recurrences does not imply anoma-
lous transport since the latter needs a specific deviation from
the Gaussian distribution. A small deviation of y=3.1 from
this value can be explained by a remnant stickiness or by
errors of simulation.

Similar results are obtained for the web map of fourfold
symmetry:

(u, + K sinv,,). (35)

The values of K were taken as K =6.349 972 that generates
strong stickiness [16] and K=6.25 for which the influence of
stickiness is almost negligible for the considered time. The
corresponding results for 7y are almost the same: vy
=3.2+0.1 for K" and y=2.9+0.1 for K=6.25 (see Fig. 4).
These results support Conjecture 1.

Upp1=UVp Upy1 =~
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The domains A for both examples were chosen in the
most uniform area of the stochastic sea, i.e., fairly far from
the main sticky islands observed in [17-19]. The results
should not depend on the choice of A if ANAg=¢. In fact
the singular area Ay is not strictly localized and the assump-
tion of ANA¢=® is a kind of approximation that can be
good for specific values of K* as it was mentioned in
[17-19].

V. SINAI BILLIARD

The Sinai billiard is a well known object of dynamics but
some questions related to transport are still waiting for solu-
tions [1,20] due to the existence of long-lasting flights (see
Fig. 5 for a trajectory in the periodically continued billiard
known as the Lorentz gas). In Fig. 6 we show the distribution
of Poincaré recurrences P(f) for the Sinai billiard with tra-
jectories on the torus (x,y) € (=1,1;-1,1). The beginning of
the curve corresponds to the result (25), i.e., to the exponen-
tial decay of the distribution of recurrences, but the large
time asymptotics provides a power tail dependence (23) with
v=3. The inset in Fig. 6 shows the exponential decay of P(z)
for small enough time, and then a crossover to the power
law. The point of crossover depends on the size of the do-
main A to return, but the general type of the curve does not
depend on the location of A.

In Fig. 7 we show the distribution of the number of pairs
N(r) that are e-separated for the first time at z. The curve
shows the crossover from exponential to power decay with
the same y=3, in correspondence with Conjecture 1.

VI. PSEUDOCHAOTIC BILLIARD

We consider a bar-in-square (slit-in-square) billiard and
the Lorentz gas analog for it (see Fig. 8). It has zero
Lyapunov exponent and the trajectories with irrational tan-
gent have weak mixing and randomness (see the correspond-
ing references in [21,6,1], where the results for the kinetics
of particles are presented).

Due to the conservation of velocity along the horizontal
axis x, the diffusion process is only along y. The trajectory is
called irrational if tan J is irrational and ¥ is the angle with
the x axis. Only irrational trajectories perform the diffusion.
There are no islands in the phase space and there is no fast
mixing process since the Lyapunov exponent is zero. The
mixing is due to diffusion. It was shown by simulation in [6]

that
y=275 wu=1.5, (36)

where u is the so-called transport exponent:
(y]y= f dy|y|F(y,t) = (const) X t*2, t—o, (37)

and F(y,r) is the distribution function (probability density) to
find a particle at coordinate y at time interval (z,z+dr) for an
ensemble of a large number of trajectories with different ir-
rational tan .

036204-6



POLYNOMIAL DISPERSION OF TRAJECTORIES IN ...

-100

o
<>

—110}

~115} '
—120}

75 80 85 90 95 100 105

PHYSICAL REVIEW E 72, 036204 (2005)

1400 T T T T T T T T

1200 b

1000 - b

800 b

5, 600

400

200

-200
—-400

I I I I I I I
—200 0 200 400 600 800 1000 1200

X

1400

FIG. 5. A particle trajectory in the Lorentz gas.

Let N(l,1;&,&0) be the non-normalized complexity func-
tion introduced in Egs. (7) and (31) and, for simplicity, use
the notation N(/,¢) omitting &, g,. A silent assumption is that
for fairly small g,, & and fairly large /g, and N the result
for N(I,t) has a stable limit. Consider two projections

N(y]) =f dt'N(Jyl.1"),

0

N1 = f AN, (38)

0

where we replaced [ — y due to the one-dimensionality of the
diffusion process. It is convenient to introduce also the num-
bers of all separated pairs by time #:

N(ly) = f dt'N(ly|,t") (39)
0

with the evident relation

), t— .

N(ly]) =N(ly

It is supposed in Egs. (37)—(40) that the distribution F(y,1) is
symmetric: F(y,t)=F(-y,f), t—®.
The main results of the simulation are shown in Figs.
9-11. They can be interpreted in the following way.
Conjecture 2. For the bar billiard

(40)

M=
in Egs. (17) and (18), i.e.,
N/(|y]) = (const) X |y|°®(&),

with some & and

(41)

t—

: (42)

E= |yl (43)

In Fig. 9 self-similar front propagation is evident, and the
numbers give uw=1.82 in good agreement with the value of
u=1.75. The value 6=-2.86, which is close to —2.7 in Fig.
10, is in agreement with Eq. (42).

Figure 11 needs a more sophisticated analysis. In corre-
spondence to Conjecture 1 and definition (21),

_al EEETE e,

h 1000 ¢ 3000 5000 ‘oo
0 1

3 4
Iogmt

FIG. 6. Probability density of recurrences after time ¢, P(z), for
the Sinai billiard: a circle of radius r=0.559 441 06 in a 2 X2 box
(-1<x<1,-1<y<1). 1536 initial conditions; run time is 10'* for
each trajectory (velocity is 1). Dots: returns to x=1,0<y
<0.2, 0.55<v,<0.75. log-log slope is —3.029 for 4.125<log;,
<5.925; semilog slope is —0.0008 for 26 <r<<5000; Circles: re-
turns to x=1, 0<y<0.2, -1 <v,<1. The log-log slope is —3.013
for 3.225<log;(<5.925; the semilog slope is —0.0078 for 9<t
< 600.
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FIG. 7. Number of pairs N(t) separated for the first time at ¢ for
the Sinai billiard: a circle of radius »=3.862 581 7 in a 13 X 13 box.

One trajectory tuns for time 3 10'0. Initial separation is &
=0.0001 along the lower side of the square; £=0.01.

N(1) = (const) X P(t) = (const)/t”. (44)

Following Egs. (38) and (44), we have

P(t)dt = dtj p(y,t)dy = (const) X dtf N(y,t)dy = (const)
0 0
X dit"*®(r) (45)
where
(1) = f plendg="0 (46)
0

From N(1)=(const) X ®(z) and Fig. 11 we have &,=3.4.
From the other side,

dt
®O(1)dt = (const) X tﬁld—da (47)
a

where we consider ensemble a, and

o 05 1 15 2 25 El

FIG. 8. An example of a trajectory in a bar-in-square billiard
and its periodically continued form. On the left is a unit square, on
the right is a part of the infinitely continued left billiard. The coor-
dinates are the same as in Fig. 5.
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FIG. 9. Bar-in-square billiard with the base cell 1 X1 and the
bar length ¢=0.411017. N,(]y|) distribution for separation of two
trajectories by time #,. N=5.2X 10' pairs of trajectories. Angular
separation in a pair £,=107® and &~ 1. Angles 9=0.9+107"1; for
0<i<5.24%x10'% £,=420% 2" for n=0,1,2,3,4,5,6 (from the left
to the right, curves 1-7). For In|y|>7 the slope is —2.86.

tan Y=ag+ 1/1 +a,/1+ -+ =ay+[ay,a,,...] (48)

is a representation of the continued fraction. Such an en-
semble was introduced in [6] for irrational trajectories and

la;,...,a,] is the nth rational approximant to (48). Then one
can write
dr dT,
= n— o, (49)
da da,
with
11
10
ol
= °r slope=-2.7
=
Z_7r
=
&0
=
ol
sl
Al
. . . , .
15 2 25 35 4 4.5

B
log [y]

FIG. 10. Bar-in-square billiard with the base cell 1 X1 and the
bar length ¢=0.411017. N, (|y])=N(|y|) distribution for separation
of two trajectories. 5.2 X 10'0 pairs of trajectories. Angular separa-
tion in a pair £,=10"% and £~ 1. Angles #=0.9+107'!i for 0<i
<5.24x10'.
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FIG. 11. Bar-in-square billiard with the base cell 1 X1 and the
bar length ¢=0.411017. Time distribution for separation of two
trajectories. 5.2 X 10'% pairs of trajectories. Angular separation in a
pair £,=10° and e~1. Angles 9=0.9+10""" for 0<i<5.24
X 1010,

Tn = )\’;"gT(n)7 a, = )\Zga(n) s (50)

where the slowly varying functions of n and the scaling con-
stants are [6,7]

In\p=1.186..., In\,=095.... (51)
Applying Egs. (50) and (51) to Eq. (49) we obtain
dr — 1 /400 N/ A1) (52)
da
or
P(t)da = (const) X di/>~ 1+ A/l A7) . (53)
In [6]

P(t)da = (const) X /1Y, y=2.75, (54)
was obtained. From Egs. (51) and (53) we have
P(t)da = dit"¥"°2/P% = dif > 7 (55)

in good agreement with Eq. (54).

VII. CONCLUSION

In this paper we have discussed some applications of the
complexity function introduced in [2]. The complexity func-
tion p is a convenient measure that characterizes local insta-
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bility properties of dynamical systems, i.e., dispersion of
pairs of initially close trajectories. It seems evident that,
knowing such a function, one has many possibilities for ex-
pressing macroscopic observables through different moments
of p.

It was shown in the paper that different properties of par-
ticle transport can be described using the distribution of the
finite time e-separation of pairs of trajectories for small e.
The results were applied to dynamical systems with chaotic
and pseudochaotic behavior.

It seems to us that a similar approach can be applied to
passive particles moving in turbulent media. The trajectory
separation in the velocity space is defined as

ov(ro.t;€,80) =v(rg+1+ &,15r0+ &) —v(rg+1,1;r).
(56)

Then we can introduce the CF p(l,1; €, €,), where gy,=or is
the initial distance in the coordinate space between trajecto-
ries, and consider the structure function

(lo(rg+1+&,t;7g+ €) —v(rg+ Lt;rg+ £0)|9)

=<|5v(r0,t;£0,8)|‘1)=f drop(ro.t; €,&)|6v(ry,t; €0, €)|?
0

(57)

where we replace the integration over / by integration over
initial coordinates of particles, i.e., over the particle en-
semble. Definition of the structure function can be found in
[22,8]. Initially, the pair of trajectories is at ry and ry+ g,. At
time 7 the particles are at r and r+[, correspondingly, i.e., [l is
the pair separation at time ¢. In turbulence theory and experi-
ment [23,24] we are interested in the dependence

(|dv(rg.t:€0,€)|9) ~ €MD (1> &> g) (58)

related to the so-called Richardson law. The relation between
Lévy walks and the Richardson law was pointed out in [25].
With the help of the complexity function p, we are connect-
ing some specific features of the dynamics to the macro-
scopic observables. This connection will be discussed in
more detail elsewhere.
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